Transition Metal‐Promoted V2CO2 (MXenes): A New and Highly Active Catalyst for Hydrogen Evolution Reaction
نویسندگان
چکیده
Developing alternatives to precious Pt for hydrogen production from water splitting is central to the area of renewable energy. This work predicts extremely high catalytic activity of transition metal (Fe, Co, and Ni) promoted two-dimensional MXenes, fully oxidized vanadium carbides (V2CO2), for hydrogen evolution reaction (HER). The first-principle calculations show that the introduction of transition metal can greatly weaken the strong binding between hydrogen and oxygen and engineer the hydrogen adsorption free energy to the optimal value ≈0 eV by choosing the suitable type and coverage of the promoters as well as the active sites. Strain engineering on the performance of transition metal promoted V2CO2 further reveals that the excellent HER activities can maintain well while those poor ones can be modulated to be highly active. This study provides new possibilities for cost-effective alternatives to Pt in HER and for the application of 2D MXenes.
منابع مشابه
A comparative study between transition-metal-substituted Keggin-type tungstosilicates supported on anatase leaf as catalyst for synthesis of symmetrical disulfides
Transition-metal-substituted (TMS) polyoxometalates of the general formula [SiW9M3O39], (where M = first row transition metal), has been synthesized and supported on anatase by sol–gel method under oil-bath condition. The tetrabutylammonium (TBA) salts of the Keggin-type polyoxotungstates [SiW9M3O39], (M = VII, CrII, MnII, FeII CoII and NiII), proved to be green, reusable, and ...
متن کاملComputational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution
Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...
متن کاملIn situ activation of a Ni catalyst with Mo ion for hydrogen evolution reaction in alkaline solution
In this study Ni catalyst have been activated during hydrogen evolution reaction (HER) by adding Mo ions into the alkaline electrolyte. After dissolving different amounts of ammonium molybdate in the 1M NaOH as electrolyte, Ni catalyst was used as cathode for HER. Afterwards a comparison between hydrogen overpotential measured in Ni catalyst with and without in situ activation has been made; th...
متن کاملBase free transfer hydrogenation using a covalent triazine framework based catalyst
Transfer hydrogenation (TH) reaction – the addition of hydrogen to an unsaturated group of an organic molecule from a source other than H2 – has been gaining a lot of attention as it is an appealing alternative to direct hydrogenation. The reasoning behind it is the elimination of pressurised hydrogen and high pressure equipment use. Besides, a conventional hydrogenation catalyst is rarely sele...
متن کاملPhotoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts.
The splitting of water into hydrogen and oxygen molecules using sunlight is an attractive method for solar energy storage. Until now, photoelectrochemical hydrogen evolution is mostly studied in acidic solutions, in which the hydrogen evolution is more facile than in alkaline solutions. Herein, we report photoelectrochemical hydrogen production in alkaline solutions, which are more favorable th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2016